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Current renewed interest in exploration of the moon, Mars, and other planetary objects
is driving technology development in many fields of space system design. In particular,
there is a desire to land both robotic and human missions on the moon and elsewhere. The
landing guidance system must be able to deliver the vehicle to a desired soft landing while
meeting several constraints necessary for the safety of the vehicle. Due to performance
limitations of current launch vehicles, it is desired to minimize the amount of fuel used. In
addition, the landing site may change in real-time in order to avoid previously undetected
hazards which become apparent during the landing maneuver.

This complicated maneuver can be broken into simpler subproblems that bound the full
problem. One such subproblem is to find a minimum-fuel landing solution that meets con-
straints on the initial state, final state, and bounded thrust acceleration magnitude. With
the assumptions of constant gravity and negligible atmosphere, the form of the optimal
steering law is known, and the equations of motion can be integrated analytically, resulting
in a system of five equations in five unknowns. It is shown that this system of equations can
be reduced analytically to two equations in two unknowns. With an additional assumption
of constant thrust acceleration magnitude, this system can be reduced further to one equa-
tion in one unknown. It is shown that these unknowns can be bounded analytically. An
algorithm is developed to quickly and reliably solve the resulting one-dimensional bounded
search, and it is used as a real-time guidance applied to a lunar landing test case.

I. Introduction

Today is an exciting time for the exploration of the moon, Mars, and other planetary objects. Renewed
interest in lunar exploration is driving new technology development for both human and robotic missions.
NASA has begun a new era of space exploration with the Constellation Program, with a goal of returning to
the moon to build a sustainable long term human presence.1 The Lunar X-Prize has promised to reward $30
million to the first private team to land a rover on the moon.2 China, India, and Japan have all successfully
orbited probes around the moon with hopes of someday putting down a lander.3,4 While both Russia and
the United States have previously landed vehicles on the moon and Mars, new technology development is
necessary to achieve greater levels of performance and safety to successfully accomplish these missions.

In the lunar landing scenario, the vehicle begins in some initial hyperbolic transfer orbit or a parking orbit
around the Moon. Given the initial orbit and a desired landing point on the surface, a targeting algorithm
determines the best Time-of-Ignition (TIG) at which to begin the deorbit. A burn is completed to put the
lander in a coasting elliptical transfer orbit. At the designated time, the powered terminal descent phase
begins. This phase can be broken into a braking phase and an approach phase.5 During the braking phase,
much of the velocity relative to the planet is reduced. During the approach phase, a pitch up maneuver
places the vehicle in a vertical attitude above the landing site. The vehicle then descends vertically to the
surface. During any part of the braking or approach phases, hazard avoidance may necessitate a target
redesignation.
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II. Current and Suggested Guidance Methods for Powered Landing

II.A. Apollo Lunar Descent Guidance

The heart of the Apollo lunar descent guidance is the assumption that the thrust acceleration is a quadratic
function of time. This defines a two-point boundary value problem with five degrees of freedom which allows
for the specification of the initial position, initial velocity, final position, final velocity, and final acceleration.
These equations can be solved for the coefficients as a function of the known initial position and velocity, the
desired final position, velocity, and acceleration, and the time-to-go (tgo). The result is a simple guidance
algorithm that produces feasible trajectories and which could run on the Apollo flight computer. In terms
of fuel used, it has been shown that the Apollo guidance performs well when compared to a fuel optimal
trajectory when only small target redesignations are necessary. However, when large target redesignations
are needed, the Apollo guidance uses much more fuel than a fuel optimal trajectory.6,7 Also, care must
be taken to define a proper value of tgo in order that the trajectory meet the desired characteristics. More
details of the Apollo lunar descent guidance can be found in references 8, 9, and 10.

II.B. Powered Explicit Guidance (PEG)

The Powered Explicit Guidance (PEG) algorithm is used by the Space Shuttle for near fuel-optimal exoatmo-
spheric powered maneuvers. It was derived for powered ascent trajectories which end in an orbital injection.
As such, there is no constraint on the downrange position. Beginning with the optimal control law for pow-
ered flight over a flat Earth in a uniform gravitational field, it is assumed that the unit thrust direction is
mainly in the downrange direction (an assumption that holds for most Space Shuttle maneuvers). A further
small angle assumption is made such that the unit thrust direction vector is approximated to be a linear
function of time. With these assumptions, the equations of motion can be integrated analytically to produce
a system of nine equations in nine unknowns. All variables can be computed given a value of the velocity-to-
be-gained vector (~Vgo). A predictor-corrector algorithm is used to find the solution, given an initial guess for
~Vgo and the desired final velocity and position vectors (except the downrange component of position).11–13

Delporte and Sauvient reported an extension of the explicit guidance concept with constraints on the guid-
ance law, such as altitude at first stage engine cut-off, thermal flux at first stage separation, and the landing
footprint of the first stage.14 Fill expanded the PEG equations to include a constraint on downrange.12 This
allows for a solution with a fully constrained final position and velocity, such as that of a powered terminal
descent. Unfortunately, this expanded capability was not implemented in the PEG flight software.

As can be seen, there are many approximations made which reduce the optimality of PEG. There is
also no way to completely constrain the final position with the original implementation; however, Fill’s
improvements should allow for this. In addition, while PEG is able to combine multiple thrust arcs, such as
a constant thrust arc followed by a constant acceleration arc, there is no computation of optimal switching
times for the throttle command between maximum and minimum thrust levels. In fact, PEG was derived
assuming that the thrust profile is a known function of time.

II.C. Other Methods

These methods have been suggested but have never flown on an actual space vehicle.

II.C.1. Analytical Near Fuel-Optimal

Since the fuel-optimal problem is difficult to solve, it has been proposed to solve related problems that are
near fuel-optimal. D’Souza developed a guidance algorithm for powered vacuum flight in a uniform grav-
itational field by minimizing a weighted function of the time-of-flight and the square of the acceleration
magnitude.15 Two similar ideas are proposed by Najson and Mease: 1) minimize the integral of the sum of
the absolute values of the thrust acceleration components, and 2) minimize the square of the thrust accel-
eration magnitude.16 Application of optimal control theory results in an analytical solution in terms of the
initial position/velocity state, desired final position/velocity state, and time-of-flight. D’Souza analytically
calculated the optimal time-of-flight as a function of the state, while Najson and Mease used a numerical
search to find the time-of-flight with the smallest fuel expenditure. For an engine with a constant specific im-
pulse (Isp, Ross has shown that a fuel optimal solution is found by minimizing the integral of the magnitude
of the thrust acceleration.17 Thus, while these methods are fuel efficient, they are not fuel optimal.
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Ueno and Yamaguchi derived an analytical guidance law by making several approximations.18 Starting
with the problem of fuel-optimal planar flight in a uniform gravitational field with a constant thrust accel-
eration, a small angle assumption is made that assumes the flight is mostly horizontal with the thrust being
directed nearly opposite the velocity vector. Constraints are placed on the final velocity vector and the final
altitude, and the final crossrange and downrange are free. Optimal control theory then leads to a polynomial
guidance law where the downrange and crossrange velocities are linear functions of time, the altitude rate is
a quadratic function of time, and the altitude is a cubic function of time. This guidance algorithm is shown
to work well for the defined problem. However, it does not allow for designation of a specific landing site,
except by proper selection of the deorbit state. This fact and the assumption of near horizontal flight implies
that the proposed algorithm will not work for hazard avoidance maneuvers. The approximations also imply
that the problem is not truly fuel optimal.

Uchiyama used a barrier function method to transform the fuel optimization problem with bounded thrust
magnitude into an unconstrained problem.19 The controls are taken as the total acceleration components
along the radial and local horizontal directions, including both the thrust and gravitational acceleration
terms. The magnitude of the total acceleration is then minimized. In order to find the necessary thrust
acceleration commands, the gravitational vector is subtracted from the optimal total acceleration vector.
Issues with this approach include the lack of a constraint on the thrust acceleration magnitude and a lack
of fuel optimality.

II.C.2. Analytical Gravity Turn

McInnes and Chomel developed guidance algorithms based on the gravity turn where the thrust vector
is directed opposite the velocity vector.20,21 The gravity turn has the desirable properties that the final
velocity magnitude is zero and the final vehicle attitude is vertical. For planar motion and constant thrust
acceleration, it is possible to analytically integrate the equations of motion for altitude, downrange, velocity
magnitude, and time as a function of flight path angle. The trajectory can be shaped by breaking it into
segments with different thrust acceleration magnitudes. This guidance algorithm is shown to work well, and
Chomel has demonstrated that it can be used for target redesignations. However, while the gravity turn may
be near fuel-optimal for descent from orbit, it is not a fuel optimal maneuver for target redesignations near
the end of the terminal descent trajectory. Thus, while this method is a viable solution for an analytical
terminal descent guidance, it may not be applicable to all terminal descent situations.

II.C.3. Numerical Methods

Acikmese and Ploen have suggested using a direct numerical method to solve the powered terminal descent
problem.22 The problem of time-fixed, fuel-optimal flight in a uniform gravitational field is made convex
under certain assumptions. This convex problem is then converted into a second-order cone programming
problem (SOCP) and solved using a numerical interior point method to find a global optimum with a known
upper bound on the number of iterations. An outer iteration is necessary to find the optimal time-of-flight.
The proposed guidance algorithm would numerically solve the SOCP onboard the vehicle. This method has
the advantage of allowing several constraints, such as bounded thrust, bounded vehicle attitude during flight,
constrained final vehicle attitude, and constraints on altitude such that the vehicle does not fly subsurface.
While this approach holds much potential, it has the disadvantage of using a numerical solver. Also, the
outer iteration to find the best time-of-flight is undesirable since the SOCP must be solved multiple times.
While a solution to the SOCP can theoretically always be found, it would be difficult to verify convergence
for all possible scenarios. Cognizant of these issues, a method was proposed whereby a family of optimal
trajectories would be generated pre-flight using this method, and a table look-up would be used onboard to
generate near fuel-optimal trajectories for any initial state.23

II.D. Areas for Improvement and Scope of Work

A fuel-optimal guidance algorithm is needed for hazard avoidance and precision landing. It can be seen that
many methods for powered terminal descent have been proposed. Only the Apollo Lunar Descent Guidance
and the Shuttle Powered Explicit Guidance have been proven in flight. Most of the methods either make no
use of optimal control theory, make approximations of the fuel optimal control law, or minimize performance
functions that do not lead to fuel optimal solutions. Current mission designs put a high value on any design
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feature that can reduce mass, thus a fuel optimal solution is desirable. Most of the methods also do not have
the ability to bound the pitch angle of the vehicle during flight. This capability may be required to ensure
that the vehicle attitude allows astronauts or sensors to view the landing site through a window. Some of
the methods can be used for hazard avoidance maneuvers and some can not.

It is desired to find a guidance algorithm which is fuel-optimal while meeting constraints on the final state,
thrust magnitude, sensor and/or window viewing angles, and minimum approach altitude. The guidance
must be able to generate commands in real-time without relying on the solution from the previous guidance
cycle, as in the case of a target redesignation in mid-flight due to hazard avoidance at the original landing
site. It is likely that this challenging problem has no analytical solution. However, it can be broken down
into simpler subproblems which can be solved analytically. The solutions to these subproblems may be
useful bounds for a numerical solution of the full problem. Towards that goal, this paper investigates the
simpler subproblem of fuel optimal flight with bounded thrust acceleration magnitude from a given initial
state to a desired final state; the pitch up maneuver to place the lander in the desired final vertical attitude
is not considered. It will be shown that this problem can be reduced to an analytically bounded search with
excellent convergence properties.

III. Problem Definition

The following assumptions are made:

1. Atmospheric forces can be neglected.

2. Gravitational acceleration is constant.

3. The rotation of the planetary object can be neglected.

4. The vehicle carries a perfectly expanded chemical rocket engine with which to create thrust force.

5. The nozzle exit velocity of the propellant is a known constant.

6. The thrust magnitude has known limits.

7. The thrust direction is along the roll axis of the vehicle and can be commanded in any direction
instantaneously.

8. The final time is free.

The only forces acting on the vehicle are the force due to gravity and its own thrust force. The equations
of motion are:

~̇R = ~V

~̇V = aT û+ ~g (1)

where ~R is the position vector, ~V is the velocity vector, ~g is the gravitational acceleration vector, aT is the
magnitude of the thrust acceleration, and û is the unit thrust direction vector.

It is desired to minimize the propellant used during the maneuver. It can be shown that minimizing
the amount of propellant burned is equivalent to minimizing the integral of the magnitude of the thrust
acceleration.24 Note that no assumption of constant thrust or constant mass is made.

{min J = mo −mf} →←
{

min J =

∫ tf

to

aT dt

}
(2)

where mo is the initial vehicle mass and mf is the final vehicle mass.
There is a maximum rate at which propellant mass can be expelled from the chemical rocket engine. The

absolute minimum rate would be zero. However, there may be operating conditions such that the minimum
rate is nonzero. These limits on propellant mass flow rate translate directly into limits on thrust magnitude.
Note that it is not assumed that the thrust magnitude limits are constant.

0 ≤ Tmin (t) ≤ T ≤ Tmax (t) (3)
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Dividing equation 3 by the mass and substituting aT = T
m yields

0 ≤ Tmin (t)

m (t)
≤ aT ≤

Tmax (t)

m (t)
(4)

The thrust acceleration magnitude limits are rewritten as:

0 ≤ aTmin
(t) ≤ aT ≤ aTmax

(t) (5)

Constraints are placed on the final state such that:

ψ=



σRx

(
Rxf
−Rxfs

)
= 0

σRy

(
Ryf −Ryfs

)
= 0

σRz

(
Rzf −Rzfs

)
= 0

σVx

(
Vxf
− Vxfs

)
= 0

σVy

(
Vyf − Vyfs

)
= 0

σVz

(
Vzf − Vzfs

)
= 0

(6)

where
σi = on/off switch for each constraint (=0 -OR- 1)
~Rf = final position vector
~Vf = final velocity vector
~Rfs = specified final position vector
~Vfs = specified final velocity vector

The σi are added to allow easy comparison of solutions with different final constraints.

IV. Application of Optimal Control Theory

The problem can be solved with the well known techniques of optimal control theory, and it is a very
well solved problem. As such, the results will be quoted directly here. Details of the solution can be found
in references 24–33, as well as others. In this research, the terminology and methodology from reference 34
are used. An assumption of familiarity with these methods is assumed. The Hamiltonian is given by:

H = aT + ~λR · ~V + ~λV · [aT û+ ~g] (7)

where ~λR and ~λV are the costate Lagrange multipliers associated with position and velocity, respectively.
Define the following variables:

~CR =

 CRx

CRy

CRz

 =

 νRx
σRx

νRy
σRy

νRzσRz

 (8)

~CV =

 CVx

CVy

CVz

 =

 νVxσVx

νVyσVy

νVz
σVz

 (9)

The Lagrange multipliers are continuous functions and can be written as:24

~λR = ~CR
~λV = ~CV + ~CRτ (10)

Let the time-to-go from the current time be defined as

τ = (tf − t) (11)

The total time-of-flight is defined as
τo = (tf − to) (12)

5 of 32

American Institute of Aeronautics and Astronautics



The length of ~λV is given by

λV =
∣∣∣~λV ∣∣∣ =

√
D + 2Eτ + Fτ2 (13)

where

D = ~CV · ~CV
E = ~CR · ~CV
F = ~CR · ~CR (14)

IV.A. Bilinear Tangent Steering

Lawden was the first to have derived the linear tangent steering law for powered vacuum flight in a uniform
gravitational field.25,26 Miele showed that the most general optimal control law for planar powered vacuum
flight in a uniform gravitational field is the bilinear tangent steering law.27 In vector notation, the optimal
unit thrust vector in a uniform gravitational field is opposite the direction of the ~λV Lagrange vector, or
”primer” vector:24

û = −
~λV∣∣∣~λV ∣∣∣ = −

(
~CV + ~CRτ

)
√
D + 2Eτ + Fτ2

(15)

If the motion is restricted to the XZ-plane and the angle of the unit thrust vector measured from the
local horizontal, θ, is found, then equation 15 reduces to the more familiar bilinear tanget form:

tan θ =
CVZ

+ CRZ
τ

CVX
+ CRX

τ
(16)

Note that the structure of the bilinear tangent steering law is independent of the thrust function; the
form of the bilinear tangent steering law holds for any bounded thrust profile. It is also independent of
the optimization function. However, this steering law can reduce to various forms, such as linear tangent or
constant thrust direction, depending on the optimization function, initial constraints, and final constraints.27

For example, when the downrange component of position is unconstrained, the bilinear tangent law reduces
to a linear tangent law.28,29

The derivation of the classic bilinear tangent steering law uses the assumption of a uniform gravitational
field. The gravitational acceleration can be reasonably assumed constant when the change in radial distance
from the center of the planetary object during the maneuver is small. Yang found that when the bilinear
tangent steering law is used in an inverse square gravitational field, it “is an excellent approximation to the
true optimal control for powered flight arcs up to at least 15 degrees” of central arc.35 In addition, it is
possible that this approximation may hold reasonably well for trajectories with larger central arcs.

IV.B. “Bang-Bang” Thrust Profile

Leitmann showed that for a bounded thrust problem, the optimal thrust profile consists of up to three
maximum or minimum thrust arcs. The structure of the thrust profile is such that the possible arcs include:
max, max-min, max-min-max, min-max, or min. He showed that the use of intermediate thrust arcs is
not optimal in most situations. In addition, he showed that the Hamiltonian, H, and costates, ~λR and
~λV , are continuous across the thrust switches.30,31 This means that the bilinear tangent steering law is a
continuous function even when the thrust magnitude switches instantaneously. A solution to the special case
of pure vertical landing was found by Meditch. He showed that the optimal thrust profile would be either
max or min-max.36 These thrust profiles are called “bang-bang” because the thrust magnitude “bangs”
instantaneously between its maximum and minimum possible values. Note that modern rocket engines can
be throttled very quickly. Topcu, Casoliva, and Mease noted that the engines for the Mars Smart Lander,
which is to be launched in 2011, can be “throttled between minimum and maximum thrust in 30-40 ms,
and so the thrust magnitude dynamics are very fast compared with the translational and mass dynamics”.32

This means that guidance commands that call for instantaneous thrust switches between maximum and
minimum limits will not pose a problem for modern planetary landers.
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The thrust acceleration magnitude switches between its upper and lower limits according to the value of
the thrust acceleration magnitude switching structure (SS).24

SS = −
(
~λV · û

)
=
∣∣∣~λV ∣∣∣ =

√
D + 2Eτ + Fτ2 (17)

Recall that the Lagrange multipliers ~λV are continuous. Therefore, the switching structure is continuous.
The thrust acceleration magnitude switching condition is given by

SS ≤ 1 when aT = aTmin

SS ≥ 1 when aT = aTmax

SS = 1 when aTmin
< aT < aTmax

(18)

One question to ask is when an optimal, off-boundary acceleration subarc can occur. It is known that
this can occur only when SS = 1. By examining the form of the SS, it can be seen that off-boundary
acceleration subarcs will generally occur only instantaneously. However, there is a special case when the
thrust acceleration can be continuously off-boundary for an entire trajectory. Examination of equation 17
shows that a continuous off-boundary acceleration subarc can occur if

D = ~CV · ~CV = 1

E = ~CR · ~CV = 0

F = ~CR · ~CR = 0 (19)

This implies that a continuous off-boundary acceleration subarc can occur when ~CR = ~λR = 0. Thus, for an
off-acceleration boundary subarc:

~λV = ~CV = constant vector (20)

Recall that the Lagrange multiplier ~λV is continuous on an optimal trajectory. This implies that it has
the same constant value for the entire trajectory. Thus, for an off-acceleration subarc to occur, the entire
optimal trajectory must be off the acceleration boundaries. This means that the unit thrust direction vector
will have the same constant value for the entire optimal trajectory. Thus, for an off-acceleration boundary
subarc, we have

û = constant unit vector (21)

Recall that when SS=1, this means that
∣∣∣~λV ∣∣∣ =

√
D + 2Eτ + Fτ2 = 1. For the special case when the

thrust acceleration is off-boundary for an entire subarc, ~CR = ~λR = 0. Also, ~λV = constant. Thus, the
Hamiltonian in equation 23 becomes

H = ~λV · ~g = ~CV · ~g = 0 (22)

This implies that ~λV must be perpendicular to ~g. This implies that the unit thrust direction is in the
horizontal plane.

From equation 8, ~CR is zero when ~σR is zero. Recall from equation 6 that the ~σR are binary variables
that act as on/off switches for the final position constraints. Thus, there are two cases when an off-boundary
thrust acceleration solution is possible. The first case is when no final position is specified. The second case
is when the desired final position is achieved by chance without a specific constraint on the final position.
In this case, the thrust directions will only allow for a very limited set of trajectories. Thus, while this
case should not be ignored, it will almost never appear in most real-world problems if the full final state is
specified. Thus, most problems will have a thrust acceleration on one of its boundaries with instantaneous
switches between the boundaries. However, it should be noted that although it is only possible to have
an off-boundary acceleration solution when there is no final position constraint, it is also possible to have
an on-boundary acceleration solution when there is no final position constraint. However, an on-boundary
acceleration solution with no final position constraint will not have the condition of equation 22. This is
discussed further in Section XI.
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IV.C. Integrals of the Problem

Certain first integrals of the optimization problem are known.

• Hamiltonian

For a time independent gravitational field, the Hamiltonian is constant. In addition, if the final time
of the problem is free, the Hamiltonian has a constant value of zero.33 Substiting for the optimal unit
thrust direction into equation 7, the first integral of the problem is then

H = aT

[
1−

∣∣∣~λV ∣∣∣]+ ~λR · ~V + ~λV · ~g = 0

H = aT

[
1−

√
D + 2Eτ + Fτ2

]
+
(
~CR · ~V

)
+
(
~CV + ~CRτ

)
· ~g = 0 (23)

• Rotational Symmetry

The optimal powered flight problem has an axis of symmetry. Problems in an inverse gravitational
field have a spherical symmetry. This leads to the following relationship:

~R× ~λR + ~V × ~λV = Constant (Inverse gravitational field) (24)

A derivation of this relationship can be found in reference 33 (pp. 85-86). For problems with a uniform
gravitational field, the axis of symmetry is about the gravitational vector. Thus, the component of the
vector expressed in equation 24 that is parallel to the gravitational vector is constant.32,33[

~R× ~λR + ~V × ~λV
]
· ~g = Constant (Uniform gravitational field) (25)

V. Analytical Integration of the Equations of Motion

It is possible to analytically integrate the equations of motion with the bilinear tangent steering law
defined in equation 15 using standard integral tables. Yang integrated the equations with constant thrust
magnitude.37 Fill integrated them assuming that the thrust acceleration profile is a quadratic function of
time.12 Delporte and Sauvient integrated the equations for a constant thrust and the assumption that the
two vectors defining the bilinear tangent law are perpendicular (~CR · ~CV = 0).14 Feeley integrated both
the linear tangent guidance law constrained to a plane and the three dimensional bilinear tangent guidance
law, both with constant thrust magnitude.38,39 Leung, Calise, and Hull integrated the equations of motion
constrained to a plane with the bilinear tangent law and constant thrust magnitude.40,41

For all these integrations, the result is a system of nonlinear equations for the final state as a function of
the vectors defining the bilinear tangent law and the time-of-flight. This system of equations is difficult to
solve, and in all the references where analytical integration was completed, the resulting system of nonlinear
equations is solved using numerical methods. Indeed, Yang himself expressed that once the equations of
motion are integrated analytically, “the determination of the constants involves the solving of 15 coupled
nonlinear simultaneous equations. It is impractical to do it analytically. With the assistance of computers,
a numerical scheme is much more appealing”.37 However, it will be shown that analytical reduction of the
problem is possible and yields useful results.

It is convenient to integrate the equations of motion in terms of the time-to-go, τ , defined in equation
11. This change of variable is equivalent to integrating the equations of motion backwards from the final
time. Consider the integration of the trajectory from the final time of flight to the initial time of flight. At
t = tf , τf = 0, ~V = ~Vf and ~R = ~Rf . At t = to, τ = τo = (tf − to), ~V = ~Vo and ~R = ~Ro. After completing
the integrations and rearranging the equations, the following vectors can be defined:

Ṽ :=
(
~Vf − ~Vo

)
− ~gτo =

[∫ τo

0

aT û dτ

]
R̃ :=

(
~Rf − ~Ro

)
− ~Voτo −

1

2
~gτ2
o =

[∫ τo

0

∫ τo

0

aT û dτ dτ

]
(26)

It is known that the optimal thrust acceleration magnitude will have up to three phases, with the thrust
acceleration magnitude equal to either its minimum or maximum value. Only in certain very rare situations,
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it is possible for aT to have a continuous, time-varying, off-boundary solution with a constant unit thrust
direction. These cases will not be considered further. At this point, it will be assumed that the thrust
acceleration limits are constant (i.e. aTmin

=constant, aTmax
=constant). This means that aT will have a

constant value on each phase. It can be shown that the same general solution exists for optimal trajectories
with one, two, or three thrust acceleration subarcs, that is

Ṽ =

(
Pi
F
− EGi√

F 3

)
~CR +

(
Gi√
F

)
~CV

R̃ =
1

2

[(
3
E2

√
F 5
− D√

F 3

)
Gi − 2

Ki

F
− 3

EPi
F 2

]
~CR +

(
Pi
F
− EGi√

F 3

)
~CV (27)

These equations represent the general integrated equations of motion for optimal solutions. They apply
regardless of how many thrust acceleration subarcs exist (one, two, or three). Pi, Gi, and Ki are integration
constants where the subscript i refers to the number of subarcs. Details of the integration can be found in
reference 24.

VI. Thrust Vector Plane

Lawden observed that the optimal thrust vector from equation 15 lies in an inertial plane defined by
the two constant vectors ~CR and ~CV

26 (pp. 70-71). It never leaves this plane. From equation 27, it can

be seen that the two vectors Ṽ and R̃ can be written as linear combinations of ~CR and ~CV . Thus, all four
vectors are coplanar. Define this plane as the Thrust Vector Plane, or simply the Thrust Plane (TP). A
coordinate system can be set in this plane with the Z-axis perpendicular to the thrust plane. Marec observed
that the vectors ~CR and ~CV can be written in terms of a magnitude and an angle29 (p. 72). A seemingly
new observation, but one that is obvious, is that the thrust plane is defined entirely by Ṽ and R̃, which are
functions of the initial state, final state, gravity, and time-of-flight. This fact can be used to greatly simplify
the problem.

Define a cartesian coordinate system such that the Z-axis points up along the vertical direction with the
origin at an altitude of zero. The X-axis and Y-axis form the horizontal plane. This coordinate system
will be referred to as the inertial frame and will be denoted with a subscript of “I”. A subscript of “TP”
will be used to denote vectors on the Thrust Plane. Define the Thrust Plane X-axis along the direction of
ṼI . Define the Thrust Plane Z-axis as a unit vector perpendicular to the plane. The Thrust Plane Y-axis
completes the right-handed coordinate system. The axes of the Thrust Plane Coordinate System are then
defined in terms of inertial vectors as

x̂TPI
=

ṼI∣∣∣ṼI ∣∣∣
ŷTPI

= ẑTPI
× x̂TPI

ẑTPI
=

ṼI × R̃I∣∣∣ṼI × R̃I ∣∣∣ (28)

Define the angle φ as the angle of the vector of interest off of the Thrust Plane. Define the angle θ as
the angle in the plane between the vector of interest and the Ṽ vector (i.e. Thrust Plane X-axis), measured

positive about the Thrust Plane normal. The vectors ~Ro, ~Vo, ~Rf , ~Vf , and ~g become:

~Ro = Ro

(
cosφRo

cos θRo
îTP + cosφRo

sin θRo
ĵTP + sinφRo

k̂TP

)
~Vo = Vo

(
cosφVo

cos θVo
îTP + cosφVo

sin θVo
ĵTP + sinφVo

k̂TP

)
~Rf = Rf

(
cosφRf

cos θRf
îTP + cosφRf

sin θRf
ĵTP + sinφRf

k̂TP

)
~Vf = Vf

(
cosφVf

cos θVf
îTP + cosφVf

sin θVf
ĵTP + sinφVf

k̂TP

)
~g = g

(
cosφg cos θg îTP + cosφg sin θg ĵTP + sinφgk̂TP

)
(29)
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Note that the vectors ~CR, ~CV , R̃, and Ṽ lie on the Thrust Plane. Thus φ = 0 for each vector, and they
have no Z-component. So, on the Thrust Plane we have

ṼTP = Ṽmag

(
cos θṼ îTP + sin θṼ ĵTP

)
R̃TP = R̃mag

(
cos θR̃ îTP + sin θR̃ĵTP

)
~CVTP

= CV

(
cos θCV

îTP + sin θCV
ĵTP

)
~CRTP

= CR

(
cos θCR

îTP + sin θCR
ĵTP

)
(30)

where
Ṽmag = Magnitude of the Ṽ vector

R̃mag = Magnitude of the R̃ vector

CV = Magnitude of the ~CV vector

CR = Magnitude of the ~CR vector

Note that θṼ = 0 by definition, because the X-Thrust Plane axis is in the direction of Ṽ . However, for
purposes of a more general derivation, this fact will be ignored for now. Define

Φ := (cos θCR
cos θCV

+ sin θCR
sin θCV

) (31)

Note that this is equivalent to the cosine of the angle between ~CV and ~CR. Using these definitions, rewrite
equations 14 as

D = ~CV · ~CV = C2
V

E = ~CR · ~CV = CRCV Φ

F = ~CR · ~CR = C2
R (32)

VII. Integration Constants for Optimal Trajectories

The integration constants (Pi, Gi, Ki) for each possible trajectory are defined using Thrust Plane nota-
tion.

VII.A. One-Phase Solution: aT = constant

P , G, and K for a solution with one thrust acceleration subarc are given by:24

P1 = aT

[
CV −

√
CV

2 + 2CRCV Φτo + CR
2τ2
o

]

G1 = −aT ln


√
CV

2 + 2CRCV Φτo + CR
2τ2
o + CRτo + CV Φ

CV + CV Φ


K1 =

1

2
aT τo

√
CV

2 + 2CRCV Φτo + CR
2τ2
o (33)

VII.B. Two-Phase Solution: aTnot
= aTmax

, aTfin
= aTmin

P , G, and K for a solution with two thrust acceleration subarcs with aTnot = aTmax , aTfin
= aTmin are given

by:24

10 of 32

American Institute of Aeronautics and Astronautics



P2max−min = aTmin (CV − 1)− aTmax

(√
CV

2 + 2CRCV Φτo + CR
2τ2
o − 1

)

G2max−min = − ln


1 +

√
CV

2Φ2 −
(
CV

2 − 1
)

CV + CV Φ

aTmin


− ln



√
CV

2 + 2CRCV Φτo + CR
2τ2
o + CRτo + CV Φ

1 +
√
CV

2Φ2 −
(
CV

2 − 1
)

aTmax


K2max−min
=

1

2
(aTmin

− aTmax
)

−CV Φ +
√
CV

2Φ2 −
(
CV

2 − 1
)

CR


+

1

2
aTmax

τo

√
CV

2 + 2CRCV Φτo + CR
2τ2
o (34)

VII.C. Two-Phase Solution: aTnot
= aTmin

, aTfin
= aTmax

P , G, and K for a solution with two thrust acceleration subarcs with aTnot
= aTmin

, aTfin
= aTmax

are given
by:24

P2min−max =

[
aTmax (CV − 1)− aTmin

(√
CV

2 + 2CRCV Φτo + CR
2τ2
o − 1

)]

G2min−max = − ln


1−

√
CV

2Φ2 −
(
CV

2 − 1
)

CV + CV Φ

aTmax


− ln



√
CV

2 + 2CRCV Φτo + CR
2τ2
o + CRτo + CV Φ

1−
√
CV

2Φ2 −
(
CV

2 − 1
)

aTmin


K2min−max
=

1

2
(aTmax

− aTmin
)

−CV Φ−
√
CV

2Φ2 −
(
CV

2 − 1
)

CR


+

1

2
aTmin

τo

√
CV

2 + 2CRCV Φτo + CR
2τ2
o (35)

VII.D. Three-Phase Solution

P , G, and K for a solution with three thrust acceleration subarcs are given by:24

P3 = aTmax

[
CV −

√
CV

2 + 2CRCV Φτo + CR
2τ2
o

]

G3 = − ln



√
CV

2 + 2CRCV Φτo + CR
2τ2
o + CRτo + CV Φ

CV + CV Φ

aTmax


− ln


1−

√
CV

2Φ2 −
(
CV

2 − 1
)

1 +
√
CV

2Φ2 −
(
CV

2 − 1
)
(aTmax−aTmin)


K3 =

1

2
aTmax

τo

√
CV

2 + 2CRCV Φτo + CR
2τ2
o

− (aTmax − aTmin)

√
CV

2Φ2 −
(
CV

2 − 1
)

CR
(36)
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VIII. Coefficient Relationships

Starting with equations 27 and applying various combinations of vector dot products and vector cross
products with ~CR, ~CV , R̃, and Ṽ , it is possible to derive the following four relationships.

P =
(
~CR · Ṽ

)
G =

√
F
[
F
(
~CV · Ṽ

)
− E

(
~CR · Ṽ

)]
(DF − E2)

K =

[
−
(
~CR · R̃

)
− 1

2

(
~CV · Ṽ

)]
0 =

(
~CR × R̃

)
+
(
~CV × Ṽ

)
(37)

The derivations are straight-forward but cumbersome. For details, see Appendix C of reference 24.
Equations 37 represent a system of four equations in five unknowns (CV , CR, θCV

, θCR
, and τo). The first

of equations 37 is equivalent to the condition that the Hamiltonian is constant along the optimal trajectory
from equation 23. It can be derived by subtracting the final value of the Hamiltonian from the initial value
of the Hamiltonian. The fourth of equations 37 is equivalent to the condition of rotational symmetry from
equation 25. It can be derived by subtracting the condition applied at the initial time from the condition
applied to the final time. The fifth equation to complete the system comes from the knowledge that the
Hamiltonian has a value of zero. It will be convenient to apply this condition at the final time.

Hf = aTf

[
1−
√
D
]

+ ~CR · ~Vf + ~CV · ~g = 0 (38)

In Thrust Plane notation, equations 37 become

P = CRṼmag (cos θCR
cos θṼ + sin θCR

sin θṼ ) (39)

G =
CR
CV

Ṽmag
(cos θCR

sin θṼ − sin θCR
cos θṼ )

(cos θCR
sin θCV

− sin θCR
cos θCV

)
(40)

K = −CRR̃mag (cos θCR
cos θR̃ + sin θCR

sin θR̃)

− 1

2
CV Ṽmag (cos θCV

cos θṼ + sin θCV
sin θṼ ) (41)

0 = CRR̃mag (cos θCR
sin θR̃ − sin θCR

cos θR̃)

+ CV Ṽmag (cos θCV
sin θṼ − sin θCV

cos θṼ ) (42)

and the final Hamiltonian condition is

0 = aTf
[1− CV ]

+ CR Vf cosφVf

(
cos θCR

cos θVf
+ sin θCR

sin θVf

)
+ CV g cosφg (cos θCV

cos θg + sin θCV
sin θg) = 0 (43)

Equations 39 through 43 represent a system of five equations in five unknowns: CV , CR, θCV
, θCR

, and τo.

IX. Reduction of Optimal Problem to Two Variables

It is possible to analytically reduce the optimal problem to two variables. For these derivations, it is
assumed that a constant thrust direction solution is not valid. This is equivalent to the assumption that all
of the vectors ~CR, ~CV , R̃, and Ṽ are non-zero and that none of them are parallel. Recall that the Thrust
Plane Coordinate system X-axis was defined as along the direction of Ṽ . Thus, the angle θṼ is equal to zero
by definition. However, for purposes of a general derivation, this fact will not be used. The first step is to
solve equations 42 and 43 for CR and CV in terms of θCR

, θCV
, and τo. Start with equation 42 and solve for

CR to obtain

CR = −CV
Ṽmag (cos θCV

sin θṼ − sin θCV
cos θṼ )

R̃mag (cos θCR
sin θR̃ − sin θCR

cos θR̃)
(44)
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Now take the final Hamiltonian in equation 43 and solve for CR

CR = −
aTf

[1− CV ] + CV g cosφg [cos θCV
cos θg + sin θCV

sin θg]

Vf cosφVf

[
cos θCR

cos θVf
+ sin θCR

sin θVf

] (45)

Set equations 44 and 45 equal and solve for CV , leading to

CV =
aTf

R̃mag (sin θR̃ − tan θCR
cos θR̃)

(CTV1 tan θCR
+ CTV2)

(46)

where

CTV1 = (CT1 cos θCV
+ CT2 sin θCV

+ CT3)

CTV2 = (CT4 cos θCV
+ CT5 sin θCV

+ CT6)

CT1 = ṼmagVf cosφVf
sin θVf

sin θṼ + R̃magg cosφg cos θg cos θR̃

CT2 = −ṼmagVf cosφVf
sin θVf

cos θṼ + R̃magg cosφg sin θg cos θR̃

CT3 = −aTf
R̃mag cos θR̃

CT4 = ṼmagVf cosφVf
cos θVf

sin θṼ − R̃magg cosφg cos θg sin θR̃

CT5 = −ṼmagVf cosφVf
cos θVf

cos θṼ − R̃magg cosφg sin θg sin θR̃

CT6 = aTf
R̃mag sin θR̃ (47)

Now substitute equation 46 into equation 44 to find CR, resulting in

CR = −
aTf

Ṽmag (sin θṼ cos θCV
− cos θṼ sin θCV

)

cos θCR
(CTV1 tan θCR

+ CTV2)
(48)

Define the following variables:

CTV3 = CT7 cos θCV
+ CT8 sin θCV

CT7 = −aTf
Ṽmag sin θṼ

CT8 = aTf
Ṽmag cos θṼ

CT9 = −aTf
R̃mag cos θR̃

CT10 = aTf
R̃mag sin θR̃ (49)

Equations 46 and 48 can be written as:

CR =
CTV3

cos θCR
(CTV1 tan θCR

+ CTV2)

CV =
CT9 tan θCR

+ CT10

CTV1 tan θCR
+ CTV2

(50)

Comparison of Pi from equations 33, 34, 35, and 36 shows that a general equation for P can be written as:

P =
(
~CR · Ṽ

)
= aTf

(√
D − 1

)
− aTo

(√
D + 2Eτo + Fτ2

o − 1
)

(51)

In Thrust Plane notation, this equation becomes

CRṼmag (cos θCR
cos θṼ + sin θCR

sin θṼ )

= aTf
(CV − 1)− aTo

(√
C2
V + 2CRCV Φτo + C2

Rτ
2
o − 1

)
(52)
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Substitute equation 31 for Φ into equation 52, isolate the square root term, square each side, and collect
terms multiplied by CR and CV . After some manipulation, we obtain

0 =

[
Ṽ 2
mag (cos θṼ + sin θṼ tan θCR

)
2 −

a2
To
τ2
o

cos2 θCR

]
cos2 θCR

C2
R

+
(
a2
Tf
− a2

To

)
C2
V

−
[
2aTf

Ṽmag (cos θṼ + sin θṼ tan θCR
) . . .

+2a2
To

(cos θCV
+ sin θCV

tan θCR
) τo
]

cos θCR
CRCV

+ 2
(
aTf
− aTo

)
Ṽmag (cos θṼ + sin θṼ tan θCR

) cos θCR
CR

− 2aTf

(
aTf
− aTo

)
CV

+
(
aTf
− aTo

)2
(53)

Note the following trigonometric identity:42

1

cos2 θCR

=
(
1 + tan2 θCR

)
(54)

After substituting this identity and some manipulation, equation 53 can be written as

0 =
(
CA1 tan2 θCR

+ CA2 tan θCR
+ CA3

)
cos2 θCR

C2
R

+ (CTV4 tan θCR
+ CTV5) cos θCR

CRCV

+ (CC1 tan θCR
+ CC2) cos θCR

CR

+ CD1C
2
V + CD2CV + CD3 (55)

where

CTV4 = (CB1 sin θCV
+ CB2)

CTV5 = (CB1 cos θCV
+ CB3)

CA1 = Ṽ 2
mag sin2 θṼ − a

2
To
τ2
o

CA2 = 2Ṽ 2
mag sin θṼ cos θṼ

CA3 = Ṽ 2
mag cos2 θṼ − a

2
To
τ2
o

CB1 = −2a2
To
τo

CB2 = −2aTf
Ṽmag sin θṼ

CB3 = −2aTf
Ṽmag cos θṼ

CC1 = 2
(
aTf
− aTo

)
Ṽmag sin θṼ

CC2 = 2
(
aTf
− aTo

)
Ṽmag cos θṼ

CD1 =
(
a2
Tf
− a2

To

)
CD2 = −2aTf

(
aTf
− aTo

)
CD3 =

(
aTf
− aTo

)2
(56)

The next step is to substitute CR and CV from equation 50 into equation 55. After some manipulation,
a quadratic equation for tan θCR

can be written as

0 = CTCR2 tan2 θCR
+ CTCR1 tan θCR

+ CTCR0 (57)
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where

CTCR2 = CTV 2
3 CA1 + CTV 2

1 CD3

+ CTV1CTV3CC1 + CTV3CTV4CT9

+ CTV1CD2CT9 + CD1CT
2
9

CTCR1 = CTV 2
3 CA2 + CTV3 (CTV4CT10 + CTV5CT9)

+ CTV1 (CD2CT10 + CTV2CD3 + CTV3CC2)

+ CTV2 (CD2CT9 + CTV1CD3 + CTV3CC1)

+ 2CD1CT9CT10

CTCR0 = CTV 2
3 CA3 + CTV 2

2 CD3

+ CTV2CTV3CC2 + CTV3CTV5CT10

+ CTV2CD2CT10 + CD1CT
2
10 (58)

Note that the coefficients in equations 58 are functions of θCV
and τo.

A numerical search can be performed to solve for the values of θCV
and τo. For a given value of θCV

and τo, first assume a thrust sequence in order to set the initial and final values of the thrust acceleration
magnitude. Now, compute all the values of CAi, CBi, CCi, and CDi from equations 56. Also, compute the
values of the CTi coefficients from equations 47 and 49. Note that all of these coefficients are only functions
of τo. Now compute the values of the CTVi coefficients defined in equations 47, 49, and 56. The coefficients
CTCR2, CTCR1, and CTCR0 defined in equation 58 can now be calculated. Two possible values for tan θCR

can be computed from equation 57. From equation 54, two possible values of the absolute value of cos θCR

are given by

|cos θCR
| = 1√

1 + tan2 θCR

(59)

Using the two possible values for |cos θCR
| and tan θCR

, two possible values for CR and CV can be found
from equations 50. The proper sign of cos θCR

is selected using the fact that CR must be positive. With the
values of tan θCR

and cos θCR
, two possible values of θCR

can be found. There is now enough information

to calculate two possible values for ~CR and ~CV . The values of the integration constants P , G, and K
can be computed from the equations defined in section VII. The Ṽ and R̃ vectors can be computed from
equations 27. Given the initial position, initial velocity, and gravity, the values of the final position and
velocity can be computed from equation 26. The problem then reduces to finding the values of θCV

and τo
that meet the desired final position and velocity. The variable θCV

is bounded because it is an angle. It will
be shown in section XI that the value of τo can be bounded analytically. Thus, the problem is reduced to a
two-dimensional bounded search.

X. Reduction of One-Phase Optimal Problem to One Variable

When the problem is constrained to a constant thrust acceleration magnitude, it is possible to analytically
reduce the optimal problem to one variable. As in the previous section, it is assumed that a constant thrust
direction solution is not valid. This is equivalent to the assumption that all of the vectors ~CR,~CV , R̃, and Ṽ
are non-zero and that none of them are parallel. For a constant thrust acceleration problem, the definitions
of P1, G1, and K1 are given in equations 33. Set P1 = P , G1 = G, K1 = K in equations 39 through 41,
respectively. Define the ratio of CR to CV as

ρ =
CR
CV

(60)

Rearrange equations 39 through 43 in terms of ρ. Recall that the angle θṼ is equal to zero by definition.

aT

[
1−

√
1 + 2ρΦτo + ρ2τ2

o

]
= ρṼmag cos θCR

(61)

aT ln

[√
1 + 2ρΦτo + ρ2τ2

o + ρτo + Φ

1 + Φ

]

=
ρṼmag sin θCR

(cos θCR
sin θCV

− sin θCR
cos θCV

)
(62)
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1

2
aT τo

√
1 + 2ρΦτo + ρ2τ2

o

= −ρR̃mag (cos θCR
cos θR̃ + sin θCR

sin θR̃)− 1

2
Ṽmag cos θCV

(63)

0 = ρR̃mag (cos θCR
sin θR̃ − sin θCR

cos θR̃)− Ṽmag sin θCV
(64)

0 = aTf

[
1

CV
− 1

]
+ ρVf cosφVf

(
cos θCR

cos θVf
+ sin θCR

sin θVf

)
+ g cosφg (cos θCV

cos θg + sin θCV
sin θg) (65)

Equations 61 through 64 represent a system of four equations in four unknowns: ρ, θCR
, θCV

, and τo.
The variable CV can be freely chosen to meet the condition in equation 65, but its value is not needed to
solve the system of equations. Fill noted this fact: for a constant thrust or constant acceleration problem,
the dimension can be reduced by ”scaling the primer” vector12 (p. 19). Multiply equation 61 by 1

2τo and
rearrange to obtain

1

2
aT τo

√
1 + 2ρΦτo + ρ2τ2

o =
1

2
τo

[
aT − ρṼmag cos θCR

]
(66)

Setting the right-hand side of equation 66 equal to the right-hand side of equation 63 yields

1

2
τo

[
aT − ρṼmag cos θCR

]
= −ρR̃mag (cos θCR

cos θR̃ + sin θCR
sin θR̃)− 1

2
Ṽmag cos θCV

(67)

Solving equation 67 for ρ and writing it in terms of tan θCR
results in

ρ =

[
Ṽmag cos θCV

+ aT τo

]
cos θCR

[(
−2R̃mag sin θR̃

)
tan θCR

+
(
Ṽmagτo − 2R̃mag cos θR̃

)] (68)

Also solve equation 64 for ρ and write it in terms of tan θCR
to obtain

ρ =
Ṽmag sin θCV

cos θCR
R̃mag (sin θR̃ − tan θCR

cos θR̃)
(69)

Setting equation 68 equal to equation 69 and rearranging yields

0 = − [DCR
sin θCV

+ ECR
cos θCV

+ FCR
] tan θCR

cos θCR

+ [ACR
sin θCV

+BCR
cos θCV

+ CCR
] cos θCR

(70)

where

ACR
= 2R̃magṼmag cos θR̃ − Ṽ

2
magτo

BCR
= R̃magṼmag sin θR̃

CCR
= aT R̃magτo sin θR̃

DCR
= −2R̃magṼmag sin θR̃

ECR
= R̃magṼmag cos θR̃

FCR
= aT R̃magτo cos θR̃ (71)

One possible solution is cos θCR
= 0. However, from equation 61 this would mean that SS =

√
1 + 2ρΦτo + ρ2τ2

o =
1. This is equivalent to the special case when an off boundary thrust acceleration can solve the problem.
This leads to a constant thrust direction solution. It was assumed at the beginning of the section that this
case is not valid for the current derivation. Thus, for cos θCR

6= 0 we have

tan θCR
=
ACR

sin θCV
+BCR

cos θCV
+ CCR

DCR
sin θCV

+ ECR
cos θCV

+ FCR

(72)
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Now return to equation 61. Isolate the square root and square both sides to obtain

0 =
(

2a2
TΦτo + 2aT Ṽmag cos θCR

)
ρ+

(
a2
T τ

2
o − Ṽ 2

mag cos2 θCR

)
ρ2 (73)

One possible solution to this equation is ρ = 0. This implies that ~CR = 0 and leads to a constant unit thrust
direction with an off-boundary thrust acceleration magnitude. This solution is equivalent to dropping the
constraint on final position. Thus, it is a special case that can be checked. Thus, for ρ 6= 0 we have

ρ = −

[
2a2
TΦτo + 2aT Ṽmag cos θCR

a2
T τ

2
o − Ṽ 2

mag cos2 θCR

]
(74)

Set equation 74 equal to equation 69, substitute for the definition of Φ from equation 31, use the trigonometric
identity in equation 54, and rearrange to find a quadratic equation in tan θCR

.

0 = [CS0 sin θCV
+ CC0 cos θCV

+ C0]

+ [CS1 sin θCV
+ CC1 cos θCV

+ C1] tan θCR

+ [CS2 sin θCV
] tan2 θCR

(75)

where

CS0 = a2
T τ

2
o Ṽmag − Ṽ 3

mag

CC0 = 2a2
T τoR̃mag sin θR̃

C0 = 2aT R̃magṼmag sin θR̃

CS1 = 2a2
T τoR̃mag sin θR̃

CC1 = −2a2
T τoR̃mag cos θR̃

C1 = −2aT R̃magṼmag cos θR̃

CS2 = a2
T τ

2
o Ṽmag − 2a2

T τoR̃mag cos θR̃ (76)

Now, substitute tan θCR
from equation 72 into equation 75 to obtain

DS3C0 sin3 θCV

+ DS0C3 cos3 θCV

+ DS2C1 sin2 θCV
cos θCV

+ DS1C2 sin θCV
cos2 θCV

+ DS2C0 sin2 θCV

+ DS0C2 cos2 θCV

+ DS1C1 sin θCV
cos θCV

+ DS1C0 sin θCV

+ DS0C1 cos θCV

+ DS0C0 = 0

(77)
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where

DS3C0 = CS0D
2
CR

+ CS1ACR
DCR

+ CS2A
2
CR

DS0C3 = CC0E
2
CR

+ CC1BCR
ECR

DS2C1 = CC0D
2
CR

+ 2CS0DCR
ECR

+ CC1ACR
DCR

+ CS1 (ACR
ECR

+BCR
DCR

) + 2CS2ACR
BCR

DS1C2 = CS0E
2
CR

+ 2CC0DCR
ECR

+ CS1BCR
ECR

+ CC1 (ACR
ECR

+BCR
DCR

) + CS2B
2
CR

DS2C0 = C0D
2
CR

+ 2CS0DCR
FCR

+ C1ACR
DCR

+ CS1 (ACR
FCR

+ CCR
DCR

) + 2CS2ACR
CCR

DS0C2 = C0E
2
CR

+ 2CC0ECR
FCR

+ C1BCR
ECR

+ CC1 (BCR
FCR

+ CCR
ECR

)

DS1C1 = 2C0DCR
ECR

+ 2CC0DCR
FCR

+ 2CS0ECR
FCR

+ C1 (ACR
ECR

+BCR
DCR

) + CC1 (ACR
FCR

+ CCR
DCR

)

+ CS1 (BCR
FCR

+ CCR
ECR

) + 2CS2BCR
CCR

DS1C0 = CS0F
2
CR

+ 2C0DCR
FCR

+ C1 (ACR
FCR

+ CCR
DCR

)

+ CS1CCR
FCR

+ CS2C
2
CR

DS0C1 = CC0F
2
CR

+ 2C0ECR
FCR

+ C1 (BCR
FCR

+ CCR
ECR

)

+ CC1CCR
FCR

DS0C0 = C0F
2
CR

+ C1CCR
FCR

(78)

It is shown in reference 24 that all coefficients that do not multiply with a power of sin θCV
are zero, so

DS0C3 = DS0C2 = DS0C1 = DS0C0 = 0. Equation 77 then reduces to

DS3C0 sin3 θCV

+ DS2C1 sin2 θCV
cos θCV

+ DS1C2 sin θCV
cos2 θCV

+ DS2C0 sin2 θCV

+ DS1C1 sin θCV
cos θCV

+ DS1C0 sin θCV
= 0 (79)

One possible solution is sin θCV
= 0. This means that ~CV would be aligned with Ṽ . From equation 69, it

can be seen that ρ = 0 when sin θCV
= 0, and when ρ = 0, then ~CR = 0. As discussed previously, it has

been assumed for purposes of this derivation that this is not the case. Thus, for sin θCV
6= 0, equation 79

reduces further to

DS3C0 sin2 θCV

+ DS2C1 sin θCV
cos θCV

+ DS1C2 cos2 θCV

+ DS2C0 sin θCV

+ DS1C1 cos θCV

+ DS1C0 = 0

(80)

Note the following well known trigonometric identity:42

sin2 θCV
+ cos2 θCV

= 1

⇒ cos2 θCV
= 1− sin2 θCV

⇒ cos θCV
= ±

√(
1− sin2 θCV

)
(81)
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Use this identity in equation 80, rearrange to isolate the square root term, square both sides, and rearrange:[
(DS3C0 −DS1C2)

2
+D2

S2C1

]
sin4 θCV

+ [2 (DS3C0 −DS1C2)DS2C0 + 2DS2C1DS1C1 ] sin3 θCV

+
[
2 (DS3C0 −DS1C2) (DS1C2 +DS1C0) +D2

S2C0 +D2
S1C1 −D2

S2C1

]
sin2 θCV

+ [2 (DS1C2 +DS1C0)DS2C0 − 2DS2C1DS1C1 ] sin θCV

+
[
(DS1C2 +DS1C0)

2 −D2
S1C1

]
= 0 (82)

Note that the coefficients of equation 82 are functions of only τo.
A numerical search can be performed to solve for the value of τo. For a given value of τo, compute all

the values of ACR
, BCR

, CCR
, DCR

, ECR
, and FCR

from equation 71. Compute the values of CS0, CC0, C0,
CS1, CC1, C1, and CS2 from equation 76. Compute the values of DS3C0 , DS2C1 , DS1C2 , DS2C0 , DS1C1 , and
DS1C0 from equation 78. The roots of the quartic defined in equation 82 can now be computed to give four
possible values of sin θCV

. Using the inverse sine function, it is possible to find four possible values of θCV

between −π/2 and π/2. However, it is possible for the proper value of θCV
to fall between −π and π. Thus,

from the four possible values of sin θCV
, there are eight possible values of θCV

. The proper values of θCV

can be resolved by checking each of the eight possible values in equation 80. This will result in four possible
values of θCV

between −π and π. Equation 72 can be used to compute the possible values of tan θCR
. As in

the previous section, equation 54 can be used to find the absolute value of cos θCR
:

|cos θCR
| = 1√

1 + tan2 θCR

(83)

The possible values of ρ are calculated from equation 69. The proper sign of cos θCR
is selected using the

fact that ρ must be positive. With the values of tan θCR
and cos θCR

, the values of θCR
can be found. The

proper value of CV can be computed from equation 65. There is now enough information to calculate four
possible values for ~CR and ~CV . The values of the integration constants P , G, and K can be computed from
equations 33. The Ṽ and R̃ vectors can be computed from equations 27. Given the initial position, initial
velocity, and gravity, the values of the final position and velocity can be computed from equation 26. The
problem then reduces to finding the values of τo that meet the desired final position and velocity. It will be
shown in section XI that the value of τo can be bounded analytically. Thus, the problem is reduced to a
one-dimensional bounded search.

XI. Bounding the Optimal Control Problem

XI.A. Optimal Control Problem Lower Boundary

A lower boundary on the performance index of the problem can be found by solving the problem with no final
position constraint. In this case, the optimal control is a constant thrust direction with a thrust acceleration
which can be off its lower and upper boundaries. This subproblem can be solved analytically. Keeping the
final velocity constraint and dropping the final position constraint from the problem can be achieved by
choosing ~σR = 0. This results in the following condition:

~CR = 0 (Inactive final position constraint) (84)

~λV = ~CV = constant (Inactive final position constraint) (85)

From equations 14, it can be seen that E = F = 0. From equation 15, the optimal unit thrust direction
reduces to

û = −
~λV∣∣∣~λV ∣∣∣ = −

~CV√
D

(86)

The unit thrust direction is constant for the entire optimal trajectory. The thrust acceleration magnitude
switching structure (SS) was defined in equation 18. Since both ~λV and û are constant, then the SS is
constant over the entire optimal trajectory. Thus, the thrust acceleration magnitude will be either on its
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upper boundary, lower boundary, or off-boundary for the entire optimal trajectory. Since the unit thrust
vector is constant, equation 26 can be written as:(

~Vf − ~Vo

)
− ~gτo =

[∫ τo

0

aT dτ

]
û(

~Rf − ~Ro

)
− ~Voτo −

1

2
~gτ2
o =

[∫ τo

0

∫ τo

0

aT dτ dτ

]
û (87)

The integrated equation for velocity can be used to determine the constant unit thrust acceleration direction
required to meet the final velocity constraint as

û =

(
~Vf − ~Vo

)
− ~gτo[∫ τo

0
aT dτ

] (88)

This shows that the optimal unit thrust direction is parallel to Ṽ . The unit thrust vector must have length
of one. Taking the vector dot product of equation 88 with itself and setting it equal to one results in[∫ τo

0

aT dτ

]2

= [(~g · ~g)] τ2
o − 2

[(
~Vf − ~Vo

)
· ~g
]
τo +

[(
~Vf − ~Vo

)
·
(
~Vf − ~Vo

)]
(89)

Equation 89 gives the value of the performance index, the integral of the thrust acceleration, as a function
of the time-of-flight. The average value of the thrust acceleration is given as

aTavg =

∫ τo
0
aT dτ

τo
=

√
[(~g · ~g)] τ2

o − 2
[(
~Vf − ~Vo

)
· ~g
]
τo +

[(
~Vf − ~Vo

)
·
(
~Vf − ~Vo

)]
τo

(90)

Since the thrust acceleration can vary between aTmin
and aTmax

, then the average value of thrust acceleration
over any time interval is also bounded by the maximum and minimum acceleration values.

Consider the case when the thrust acceleration is off-boundary. An equation for the time-of-flight that
minimizes the unbounded performance index can be written by taking the derivative of equation 89 with
respect to τo and setting it equal to zero. This is referred to as the “unbounded performance index” because
it does not account for the thrust acceleration bounds, hence

τounbounded
=

[(
~Vf − ~Vo

)
· ~g
]

(~g · ~g)
(91)

It is simple to verify that the unbounded time-of-flight will cause the unit thrust direction to be perpendicular
to the gravitational vector, as shown in equation 22. It will also make SS=1. Substitution of equation 91
into equation 89 results in the unbounded optimal performance index as

[∫ τo

0

aT dτ

]
unbounded

=

√√√√[(
~Vf − ~Vo

)
·
(
~Vf − ~Vo

)]
−

[(
~Vf − ~Vo

)
· ~g
]2

(~g · ~g)
(92)

The average thrust acceleration necessary to achieve this performance index value can be found by substi-
tution of equation 91 into equation 90 and use of the trigonometric identity in equation 54.

aTavgunbounded
= |~g| tan θ∆V g (93)

where θ∆V g is the angle between the gravity vector, ~g, and the vector representing the change in velocity

from the initial to the final state,
(
~Vf − ~Vo

)
. Note that this angle is bounded such that 0o ≤ θ∆V g ≤ 180o.

Recall that in this special case, the thrust acceleration is applied perpendicular to the gravity vector.
When tan θ∆V g < 0, this implies that the problem is not controllable when thrust is applied only perpendic-
ular to the gravity vector. When this occurs, the thrust acceleration magnitude must be on the maximum
or minimum boundary.
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For the case when 90o ≤ θ∆V g ≤ 180o, the change in velocity requires the thrust to act against gravity.
Thus, a component of the acceleration must be in the direction parallel to gravity. In order to minimize
the gravity losses, the minimum time solution is sought. This means that the optimal solution uses the
maximum acceleration possible.

For the case when 0o ≤ θ∆V g < 90o, the change in velocity allows some use of gravity to achieve it. The
optimal component of acceleration in the channel parallel to gravity is zero. In this case, gravity is allowed
to carry the vehicle along the gravity channel while all control effort is focused on the velocity perpendicular
to the gravity vector. However, it is possible that this “unbounded” optimal solution results in an average
acceleration which is outside the acceleration limits. In this case, the acceleration limit closest to the average
acceleration is the bounded optimal solution. From equation ??, a quadratic equation for the time-of-flight
when the thrust acceleration is on one of its boundaries can be written[

(~g · ~g)− a2
Tlimit

]
τo

2 − 2
[(
~Vf − ~Vo

)
· ~g
]
τo +

[(
~Vf − ~Vo

)
·
(
~Vf − ~Vo

)]
= 0

Only positive roots of this equation are possible solutions. The value of the performance index is then given
by the value of aTlimit

multiplied by the positive roots of this equation. For real world problems, only real
solutions of this equation are allowed. By examining the discriminant of this quadratic equation, a necessary
condition on aTlimit

for real solutions is found to be:24

a2
Tlimit

≥ |~g|2 sin2 θ∆V g (94)

Thus the physics of the problem impose a lower limit on the possible thrust acceleration magnitude. For a
solution to this problem, the maximum thrust acceleration limit must be greater than this value.

There is now enough information to find the solution to this subproblem. The equations derived in this
section can be used to evaluate the performance index for the cases when aT = aTmin

, aT = aTmax
, and

aTmin
≤ aT ≤ aTmax

. The solution which gives the minimum value of the performance index while satisfying
the constraints is a lower bound of the problem.

XI.B. Optimal Control Problem Upper Boundary

Any feasible solution to the problem is an upper bound on the performance index. Consider a trajectory
that is comprised of two segments with constant thrust acceleration magnitude and direction. It is desired
to find the thrust magnitude, thrust direction, and segment times that will take a vehicle from an initial
position and velocity state to a final position and velocity state.

The equations of motion from equation 1 can be easily integrated along each segment, due to the constant
thrust acceleration and gravity. The first segment runs from the initial state and time to the unknown
switching state and time. The second segment runs from the unknown switching state and time to the final
state and time. Combining the two equations to eliminate the unknown switching state and time results in

Ṽ = [aT2
τ2] û2 + [aT1

τ1] û1

R̃ =

[
1

2
aT2

τ2
2

]
û2 +

[
1

2
aT1

(τ2 + τ) τ1

]
û1 (95)

where

τ = (tf − to) = Total time-of-flight

τ1 = (ts − to) = Time-of-flight for segment 1

τ2 = (tf − ts) = Time-of-flight for segment 2 (96)

Note that
τ = τ1 + τ2 (97)

Define the ratio of τ2 to τ as

ρ =
τ2
τ

(98)

Note that since 0 ≤ τ2 ≤ τ , then it must be true that 0 ≤ ρ ≤ 1. Now τ1 and τ2 can be written in terms of
τ and ρ as

τ1 = τ (1− ρ)

τ2 = τρ (99)
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Substitute equations 99 into equations 95 to obtain

Ṽ

τ
= [aT2

ρ] û2 + [aT1
(1− ρ)] û1

R̃

τ2
=

[
1

2
aT2

ρ2

]
û2 +

[
1

2
aT1

(
1− ρ2

)]
û1 (100)

Solving these equations for the thrust direction unit vectors yields

û1 =

[
2R̃− Ṽ τρ

]
aT1

τ2 (1− ρ)

û2 =

[
−2R̃+ Ṽ τ (1 + ρ)

]
aT2

τ2ρ
(101)

Note that the thrust direction vectors must be unit vectors by definition. Taking the vector dot product of
û1 and û2 from equation 101 with themselves, setting them equal to one, and rearranging results in

a2
T1

=

[
4
(
R̃ · R̃

)
− 4

(
R̃ · Ṽ

)
τρ+

(
Ṽ · Ṽ

)
τ2ρ2

]
τ4 (1− ρ)

2

a2
T2

=

[
4
(
R̃ · R̃

)
− 4

(
R̃ · Ṽ

)
τ (1 + ρ) +

(
Ṽ · Ṽ

)
τ2 (1 + ρ)

2
]

τ4ρ2
(102)

For any given value of τ , it will be useful to know the value of ρ which makes the thrust acceleration of each
segment equal to a given value (for example, the maximum or minimum acceleration limits). Rearranging
equations 102 results in quadratic equations for ρ as a function of aT and τ . For aT1

, we have[
−a2

T1
τ4 +

(
Ṽ · Ṽ

)
τ2
]
ρ2

+
[
2a2
T1
τ4 − 4

(
R̃ · Ṽ

)
τ
]
ρ

+
[
−a2

T1
τ4 + 4

(
R̃ · R̃

)]
= 0 (103)

For aT2
, we have [

−a2
T2
τ4 +

(
Ṽ · Ṽ

)
τ2
]
ρ2

+
[
2
(
Ṽ · Ṽ

)
τ2 − 4

(
R̃ · Ṽ

)
τ
]
ρ

+
[(
Ṽ · Ṽ

)
τ2 − 4

(
R̃ · Ṽ

)
τ + 4

(
R̃ · R̃

)]
= 0 (104)

Two quadratic equations

a2x
2 + a1x+ ao = 0

b2x
2 + b1x+ bo = 0 (105)

can be solved by the same value of x only when the following condition holds:24

0 = [a2b1 − a1b2] [a1bo − aob1]− [a2bo − aob2]
2

(106)

This condition can be used with equations 103 and 104 to find a polynomial equation for τ as a function
of the initial state, final state, gravity, and thrust acceleration magnitude on each segment. The following
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condition is obtained:

0 =
{ [(

Ṽ · Ṽ
)
τ2 − a2

T1
τ4
] [
−4
(
R̃ · Ṽ

)
τ + 2

(
Ṽ · Ṽ

)
τ2
]
. . .

−
[
−4
(
R̃ · Ṽ

)
τ + 2a2

T1
τ4
] [(

Ṽ · Ṽ
)
τ2 − a2

T2
τ4
] }

. . .

∗
{ [

−4
(
R̃ · Ṽ

)
τ + 2a2

T1
τ4
] [(

Ṽ · Ṽ
)
τ2 − 4

(
R̃ · Ṽ

)
τ + 4

(
R̃ · R̃

)]
. . .

−
[
4
(
R̃ · R̃

)
− a2

T1
τ4
] [
−4
(
R̃ · Ṽ

)
τ + 2

(
Ṽ · Ṽ

)
τ2
] }

. . .

−
{ [(

Ṽ · Ṽ
)
τ2 − a2

T1
τ4
] [(

Ṽ · Ṽ
)
τ2 − 4

(
R̃ · Ṽ

)
τ + 4

(
R̃ · R̃

)]
. . .

−
[
4
(
R̃ · R̃

)
− a2

T1
τ4
] [(

Ṽ · Ṽ
)
τ2 − a2

T2
τ4
] }2

(107)

Each coefficient of the polynomial is a function only of the initial state, final state, gravity, and the thrust
acceleration magnitude on each segment. An initial attempt to collect terms of τ by hand was abandoned.
Instead, a Matlab script was written to symbolically convolve each subpolynomial in tau in order to define
the coefficients. The resultant 10th order polynomial in τ is much too large to put into print.

There is now enough information to solve the problem for a given initial state, final state, gravity, and
maximum and minimum thrust acceleration. The coefficients of equation 107 are evaluated, assuming thrust
acceleration magnitudes for each segment. All positive, real roots of this equation are potential solutions for
τ . If no positive, real roots exist, different thrust acceleration magnitudes are chosen. Once potential values
of τ are available, the roots of either equations 103 or 104 are found. The roots that are between zero and
one are potential values of ρ. The value of the performance index is given by:∫ τo

0

aT dτ = aT1τ1 + aT2τ2 = [aT1 (1− ρ) + aT2ρ] τ (108)

If multiple solutions exists, the one with the lowest performance index is chosen. The unit thrust direction
for each segment can then be computed from equations 101.

XII. Numerical Solution of Reduced Problem

An algorithm to solve the optimal control problem with a constant thrust acceleration magnitude was
developed. This algorithm is a mechanization of the equations from section X. Lower and upper bounds
on the time-of-flight are given in section XI. The algorithm is a one-dimensional bounded search developed
specifically for the problem at hand.

In order to test the proposed guidance algorithm in various scenarios, a simulation was developed in
Matlab.43 The simulation models a vehicle as a point mass over a rotating, spherical planet with an inverse
gravitational field. Both the navigation and control systems are assumed to be perfect. The guidance is
called at a specified rate, and the solution is assumed to be instantaneously available. The vehicle rocket
engine is assumed to be perfectly expanded and throttleable. In practice, the guidance commands a thrust
acceleration level. Both nominal runs and monte carlo runs are completed. Each monte carlo run includes
100 dispersed trajectories. For details on the models of the simulation, see reference 24.

A numerical optimizer was used to test the optimality of the solution from the simulation. The numerical
optimization uses the Legendre pseudospectral collocation method. A pseudospectral differentiation matrix
is used to write the equations of motion as a set of nonlinear algebraic equations. The problem is then
written numerically as a parameter optimization problem, where the states, controls, and time-of-flight are
manipulated by a numerical optimizer to achieve an optimal solution. Details of the optimization method
can be found in reference 44.

XII.A. Test Case Definition

The lander begins in a circular orbit with an altitude of 100 kilometers and an inclination of 60 degrees. It
is at its maximum southern latitude when a deorbit burn is completed to put the lander into an elliptical
transfer orbit with an apolune altitude of 100 km and a perilune altitude of 20 km. When the lander
reaches the perilune of the transfer orbit, the descent phase begins with a braking burn aligned opposite
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the planet relative velocity vector. This portion of flight is not modeled in the simulation. When the
altitude drops below a threshold of 6 km, the closed-loop guidance commands the thrust acceleration vector
to achieve a desired final position and velocity state. Guidance is called every 10 seconds to generate new
thrust commands. Between guidance calls, the thrust acceleration command profile from the last guidance
call is followed open loop. In order to simulate a possible hazard avoidance maneuver, the target may be
redesignated at a total range-to-target of 2 kilometers. If this occurs, the new landing target is loaded into
guidance at the time of redesignation; the guidance has no apriori knowledge of the new landing site. When
the time-to-go of the optimal flight phase drops below 10 seconds, guidance is no longer called, and the final
guidance commands are followed open loop. At the termination of the optimal flight, the vehicle is over the
landing site with a very small negative altitude rate and no horizontal velocity. The pitch up and vertical
landing phases are not modeled in the simulation.

The guidance algorithm computes commands in a topocentric guidance frame. For this frame, the X-axis
is East, the Y-axis is North, and the Z-axis is Up. The guidance algorithm assumes that all gravitational
acceleration is directed along the negative Z-guidance axis. During each call to guidance, a corrected gravity
term is added to account for the centripetal acceleration of the topocentric frame.

~gGD =

 0

0

−go

+

 0

0
V 2
Ihorizontal

Rmag

 (109)

where
go = Gravitational acceleration magnitude at surface of planet

VIhorizontal
= Inertial velocity in the local horizontal plane

Rmag = Radial position magnitude

The initial state of the lander is given in Table 1. The selected landing targets are given in Table 2. The
lander vehicle properties are given in Table 3. The properties of the moon are given in Table 4. The monte
carlo dispersions are given in Table 5.

Variable Units Initial State

Range North of Target m 3100

Range East of Target m -21120

Geocentric Altitude m 6000

Planet Relative Velocity Magnitude m/s 350

Planet Relative Topocentric

Flight Path Angle
deg -18.65

Planet Relative Topocentric

Azimuth Angle
deg 104

Table 1. Lunar Test Case Initial State
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Variable Units
Landing Site

Primary Divert

Geocentric Latitude deg 58.9 58.91649

Longitude deg 146.73 146.76298

Geocentric Altitude m 100 100

Geocentric Altitude Rate m/s -5 -5

Planet Relative

Horizontal Velocity
m/s 0 0

Note: The divert landing site is 0.5 km north and 1.0 km east

of the primary landing site.

Table 2. Lunar Test Case Landing Targets

Variable Units Value

Thrust Acceleration Magnitude m/s2 5.5

Gravitational Acceleration Magnitude

at Surface of Planet
m/s2 1.635

Table 3. Lunar Test Case Vehicle Properties

Variable Units Value

Equatorial Radius km 1737.4

Gravitational Constant km3/s2 4.9028x103

Sidereal Rotation Period hours 655.728

Table 4. Planetary Properties of the Moon

Variable Units Mean
Uniform

Dispersion

Range North of Target m 3100 ±500

Range East of Target m -21120 ±500

Geocentric Altitude m 6000 ±100

Planet Relative

Velocity Magnitude
m/s 350 ±5

Planet Relative Topocentric

Flight Path Angle
deg -18.65 ±0.25

Planet Relative Topocentric

Azimuth Angle
deg 104.0 ±0.25

Table 5. Lunar Test Case Monte Carlo Dispersions
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XII.B. Flight to the Primary Target

Table 6 contains results for flight to the primary target. A comparison is given between the optimized
trajectory, the nominal trajectory from the simulation, and statistical results of the 100 dispersed trajectories
at the final flight time. Target accuracy for all cases is very good, and the performance index from the nominal
simulation is very close to the numerically optimized performance index. The performance index shows a
variation of roughly 90 meters/second due to the dispersed initial state in the monte carlo analysis.

Parameter Units Target Optimizer Nominal Min Mean Max

Total Range m 0 1.25e-1 8.55e-2 8.40e-5 8.99e-2 2.01e-1

North Range m 0 1.78e-2 -8.55e-2 -1.99e-1 -8.48e-2 7.53e-3

East Range m 0 -1.24e-1 0.00 -6.34e-2 1.12e-2 7.32e-2

Geocentric

Altitude
m 100 100.006 101.217 100.538 101.393 102.060

Geocentric

Altitude Rate
m/s -5 -5.000 -4.844 -4.899 -4.833 -4.782

Planet Relative

Horizontal Velocity
m/s 0 1.465e-3 1.26e-2 3.80e-4 1.123e-2 1.841e-2

Time-of-Flight s – 75.2567 75.3535 74.706 78.896 91.257

Performance Index m/s – 413.9118 414.4443 410.883 433.928 501.914

Table 6. Primary Target: Comparison of Optimizer and Simulation at Final Time

Figures 1(a) through 1(h) show trajectory plots for flight to the primary target. For each plot, the solid
red line shows the nominal trajectory from the simulation, the dashed cyan line shows the trajectory from
the optimizer, and each solid blue line represents one dispersed trajectory. From these figures, it can be seen
that the nominal trajectory matches the optimized trajectory very well. It can also be seen that each monte
carlo flight hits the desired final target state.

Figure 1(a) shows the geocentric altitude versus the total range to the target. Figure 1(b) shows the
time history of the planet relative velocity magnitude. Of particular interest is Figure 1(c), which shows the
groundtrack in terms of geocentric latitude versus longitude. Each dispersed trajectory indeed hits the final
target point, but 65% of the cases overfly the target by more than 10 meters before turning around. This
can also be seen in Figure 1(d), which show the time history of the planet relative topocentric flight path
angle. The variations seen in flight path angle near the end of the trajectories show the flight characteristics
of a vehicle correcting for overflight. It can also be seen that the flight path angle varies slightly between
the nominal and optimized trajectories near the end of flight.

Figures 1(e) and 1(f) show the thrust direction angles. Differences can be seen between the nominal
and optimized trajectories which lead to a slightly better solution for the optimizer. For the monte carlo
results, the variations at the end of the trajectory show vehicle response to the overflight. However, it has
been verified with the numerical optimizer that the overflight trajectories are indeed optimal for flight from
each particular initial dispersed state. The overflight is predicted on each call to guidance, beginning with
the very first call. This is due to the fact that a constant thrust acceleration magnitude, aT , is used for the
entire trajectory. For a particular dispersed initial state, a different value for aT would minimize the amount
of overflight. However, for the value of aT used in this test case, the overflight is fuel optimal for many of the
dispersed trajectories. No analysis was performed to optimize the thrust acceleration magnitude for each
dispersed trajectory.

Figure 1(g) shows the total angle of attack. The difference between the nominal and optimized trajectories
is most pronounced in these plots. Note that the optimal total angle of attack is not zero, although it is
small. Thus, a gravity turn which thrusts opposite the velocity vector is not optimal for the constraints
of this test case. The same trend is seen in the monte carlo trajectories. Figure 1(h) shows the estimated
time-to-go as a function of time for each trajectory. No line is given for the optimizer because it is flown
off-line. As the guidance is called every 10 seconds, the time-to-go decrements nearly linearly with time for
each trajectory.
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XII.C. Flight to the Divert Target

Table 6 contains results for flight to the divert target. For this scenario, the guidance is initially given the
primary landing target. At a total range-to-target of two kilometers, the divert landing target defined in
Table 2 is given to the guidance. The divert landing site is five hundred meters north and one kilometer
east of the primary landing site. For direct comparison, the exact initial state dispersions used for the flight
to the primary target are used here. A comparison is given between the nominal trajectory to the primary
target, the nominal trajectory to the divert target, and statistical results of the 100 dispersed trajectories at
the final flight time. Note that the target accuracy is very good. The performance index shows a variation
of roughly 40 meters/second due to the dispersed initial state.

Parameter Units Target Nominal Primary Nominal Divert Min Mean Max

Total Range m 0 8.55e-2 3.62e-1 8.00e-3 2.47e-1 4.19e-1

North Range m 0 -8.55e-2 -2.58e-1 -2.62e-1 -1.71e-1 8.00e-3

East Range m 0 0.00 2.55e-1 0 1.74e-1 3.30e-1

Geocentric

Altitude
m 100 101.217 101.730 100.540 101.388 101.854

Geocentric

Altitude Rate
m/s -5 -4.844 -4.818 -4.894 -4.837 -4.812

Planet Relative

Horizontal Velocity
m/s 0 1.26e-2 4.098e-2 1.894e-3 2.864e-2 4.232e-2

Time-of-Flight s – 75.3535 78.675 77.543 78.555 84.546

Performance Index m/s – 414.4443 432.7125 426.487 432.053 465.003

Table 7. Divert Target: Comparison of Divert and Primary Trajectories at Final Time

Figures 1(i) through 1(p) show data for the Lunar Test Case nominal flight to the primary and divert
landing sites. For each plot, the solid red line shows the nominal trajectory to the divert target, the dashed
cyan line shows the nominal trajectory to the primary target, and each solid blue line represents one dispersed
trajectory. The two nominal trajectories are exactly the same until the total range-to-target reaches a value
of two kilometers. Figure 1(i) shows the geocentric altitude versus the total range to the target. The
discontinuity in the range occurs when the divert target is loaded into guidance. Figure 1(j) shows the time
history of the planet relative velocity magnitude. Figure 1(c) shows the groundtrack in terms of geocentric
latitude versus longitude. Note that none of the trajectories overfly the divert target. Figure 1(l) shows the
time history of the planet relative topocentric flight path angle. From these plots, it can be seen that each
trajectory hits the desired final target state.

Figures 1(m) and 1(n) show the thrust direction angles. The guidance response to the divert target
can be seen clearly. Especially of interest is Figure 1(o), which shows the total angle of attack. Flight to
the primary target has a small total angle of attack. This shows that the optimal thrust direction is very
nearly opposite the velocity vector. However, for the divert trajectory, it can be seen that thrusting along
the velocity vector is not desired. For both the nominal and monte carlo flights, it can be seen that the
optimal thrust profile is not aligned opposite the velocity vector during the divert maneuver. The estimated
time-to-go versus time is shown in Figure 1(p). A discontinuity occurs when the divert target is loaded into
guidance. Note that except for this discontinuity, the estimated time-to-go is nearly linear with time.

XIII. Conclusions

Powered descent is a problem often characterized by a desire to safely achieve a specified landing target
while minimizing the amount of fuel used in the maneuver. Integration of the equations of motion with
the well known fuel optimal bilinear tangent steering law results in a system of five nonlinear equations in
five unknowns. It was observed that the optimal unit thrust vector lies in a plane completely defined by
the initial position, initial velocity, final position, final velocity, gravity, and the time-of-flight. The major
contribution of this research is the use of this Thrust Plane to reduce the dimensionality of the nonlinear
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problem. The problem with lower and upper thrust acceleration bounds can be reduced to a system of two
equations in two unknowns: the time-of-flight and the angle of the velocity Lagrange multiplier in the Thrust
Plane. The problem with a constant thrust acceleration can be reduced to one equation in one unknown: the
time-of-flight. In addition, analytical lower and upper bounds on the time-of-flight have been derived. Thus,
the problem is reduced to either a bounded two-dimensional search or a bounded one-dimensional search.
The bounded one-dimensional search that defines the problem with constant thrust acceleration has been
mechanized. It was demonstrated as a potential guidance algorithm for terminal descent to the surface of
the moon. Its potential use for hazard avoidance divert maneuvers was shown. Several ares for future work
have been identified:

1. The bounded one-dimensional search for the constant thrust acceleration solution was mechanized
efficiently. Work was begun on a similar mechanization of the bounded two-dimensional search for the
problem with bounded thrust acceleration. However, an efficient algorithm has not yet been found.

2. The reduction of dimensionality was done for problems with bounded thrust acceleration. However,
some problems may be better described by a bounded thrust magnitude. The concept of the Thrust
Plane may be applicable to such problems, allowing for reduction of dimensionality for bounded and
constant thrust magnitude solutions.

3. During the course of this research, it was noted that the bounded thrust acceleration problem could
be reduced to one variable if enough numerical precision were available to compute the coefficients of a
polynomial in time-of-flight with order greater than twenty. The coefficients themselves are high order
polynomials of the parameters of the problem, and thus are prone to numerical error. This avenue was
not investigated in the current research.

4. The derivation of the optimal control law does not constrain the trajectory to fly above the surface of
the planet. The trajectory is determined by the initial state, final state, and gravity. It is very possible
that the optimal trajectory will fly subsurface. For the test cases of this research, the initial states
were chosen to avoid subsurface flight. This is not difficult, but care must be taken to choose a proper
initial state such that the trajectory will fly above the surface for all dispersed states. Future work
may be done to include a constraint on altitude to ensure flight above the surface.

5. For guidance implementation of the constant thrust acceleration algorithm, it may be desired to search
for the best value of the constant thrust acceleration. This may allow for lower fuel usage for dis-
persed trajectories. It may also be possible to select proper thrust acceleration magnitudes that avoid
subsurface flight.

6. The algorithm was tested in a three degree-of-freedom simulation with perfect control and perfect
navigation. While this is a good environment for proof-of-concept work, the algorithm should be
tested in a high-fidelity, six degree-of-freedom environment.
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